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Abstract. We consider an extensional higher-order logic programming
language which possesses the minimum Herbrand model property. We
propose an SLD-resolution proof procedure and we demonstrate that it
is sound and complete with respect to this semantics. In this way, we ex-
tend the familiar proof theory of first-order logic programming to apply
to the more general higher-order case. We then enhance our source lan-
guage with constructive negation and extend the aforementioned proof
procedure to support this new feature. We demonstrate the soundness
of the resulting proof procedure and describe an actual implementation
of a language that embodies the above ideas.

1 Introduction

The two most prominent declarative paradigms, namely logic and functional
programming, differ radically in an important aspect: logic programming is tra-
ditionally first-order while functional programming encourages and promotes the
use of higher-order functions and constructs. The initial attitude of logic pro-
grammers towards higher-order logic programming was somewhat skeptical: it
was often argued that there exist ways of encoding or simulating higher-order
programming inside Prolog itself (see, for example, [8]). However, ease of use is
a primary criterion for a programming language, and the fact that higher-order
features can be simulated or encoded does not mean that it is practical to do so.

Eventually extensions with genuine higher-order capabilities were introduced.
These extensions allow predicates to be applied but also passed as parameters.
The existing proposals can be placed in two main categories, namely the inten-
sional and the extensional ones. In the former category, the two most prominent
languages are λProlog [6] and HiLog [4]. The latter category is much less devel-
oped: currently there exist two main proposals for extensional higher-order logic
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programming, namely [7] and [1]; however, apart from the work reported in this
dissertation, no other actual systems have been built so far.

In an extensional language, two predicates that succeed for the same instances
are considered equal. On the other hand, in an intensional language it is possible
that predicates that are equal as sets will not be treated as equal. In other words,
a predicate in an intensional language is more than just the set of arguments for
which it is true. For example, in Hilog, two predicates are not considered equal
unless their names are the same.

Example 1. Consider a program that consists only of the following rule:

p(Q):-Q(0),Q(1).

In an extensional logic language, predicate p can be understood in purely set-
theoretic terms: p is the set of all those sets that contain both 0 and 1.

It should be noted that this program is also a syntactically acceptable pro-
gram of the existing intensional logic programming languages. The difference is
that in an extensional language the above program has a purely set-theoretic se-
mantics. Actually, as we are going to see, this set theoretic interpretation allows
us to permit queries of the form ?-p(R) which will get meaningful answers (the
answer in this case will express the fact that R is any relation which is true of
both 0 and 1). Notice that an intensional language will not in general provide an
answer to such a query (since there does not exist any actual predicate defined
in the program that is true of both 0 and 1).

The first work in this area was [7]. In that paper, W. W. Wadge demonstrated
that there exists a modest fragment of higher-order logic programming that can
be understood in purely extensional terms. More specifically, Wadge discovered
a simple syntactic restriction which ensures that compliant programs have an
extensional declarative reading. Roughly speaking, the restriction says that rules
about predicates can state general principles but cannot pick out a particular
predicate for special treatment. Wadge gave several examples of useful exten-
sional higher-order programs and outlined the proof of a minimum-model result.
Finally, Wadge conjectured that a sound and complete proof system exists for
his fragment, but did not further pursue such an investigation.

2 The Proposed Approach: an Intuitive Overview

The first problem we consider is to bypass one important restriction of [7], namely
the inability to handle program clauses or queries that contain uninstantiated
predicate variables. The following example illustrates these ideas:

Example 2. Consider the following higher-order logic program written in an ex-
tended Prolog-like syntax.

p(Q):-Q(0),Q(s(0)).

nat(0).

nat(s(X)):-nat(X).



The Herbrand universe of the program is the set of natural numbers in successor
notation. According to the semantics of [7], the least Herbrand model of the
program assigns to predicate p a continuous relation which is true of all unary
relations that contain at least 0 and s(0). Consider now the query ?-p(R) which
asks for all relations that satisfy p. Such a query seems completely unreasonable,
since there exist uncountably many relations that must be substituted and tested
in the place of R.

In our example, despite the fact that there exists an infinite number of relations
that satisfy p, all of them are supersets of the finite relation {0, s(0)}. In some
sense, this finite relation represents all the relations that satisfy p. But how can
we make the notion of “finiteness” more explicit? For this purpose we adopt
the semantics described in [3]. The new semantics allows us to introduce a rela-
tively simple, sound and complete proof system which applies to programs and
queries that may contain uninstantiated predicate variables. The key idea can
be demonstrated by continuing Example 2. Given the query: ?-p(R) one (inef-
ficient and tedious) approach would be to enumerate all possible finite relations
of the appropriate type over the Herbrand universe. Instead of this, we use an
approach which is based on what we call basic templates: a basic template for
R is (intuitively) a finite set whose elements are individual variables. For exam-
ple, assume that we instantiate R with the template {X, Y}. Then, the resolution
proceeds as follows.

?-p(R)

?-p({X, Y})
?-{X, Y}(0), {X, Y}(s(0))
?-{0, Y}(s(0))
?-true

and the proof system will return the answer R = {0, s(0)}. The proof system will
also return other finite solutions, such as R = {0, s(0), Z1}, R = {0, s(0), Z1, Z2},
and so on. However, a slightly optimized implementation can be created that
returns only the answer R = {0, s(0)}, which represents all the finite relations
produced by the proof system. The intuition behind this answer is that the given
query succeeds for all unary relations that contain at least 0 and s(0).

One basic property of all the higher-order predicates that can be defined
in the language considered so far, is that they are monotonic. Intuitively, the
monotonicity property states that if a predicate is true of a relation R then it is
also true of every superset of R. However, there are many natural higher-order
predicates that are nonmonotonic and which a programmer would like to be able
to write. For example, assume we want to define a predicate disconnected(G)

which succeeds if its input argument, namely a graph G, is disconnected. A
graph is simply a set of pairs, and therefore disconnected is a second-order
predicate. Notice that disconnected is obviously nonmonotonic: given graphs
G1 and G2 with G1 ⊆ G2, it is possible that disconnected(G1) succeeds but
disconnected(G2) fails.

The obvious idea in order to add nonmonotonicity is to enhance the language
with negation-as-failure. However, this is not as straightforward as it sounds,



because even the simpler higher-order programs with negation face the well-
known problem of floundering [5]. In classical logic programming a computation
is said to flounder if at some point a goal is reached that contains only nonground
negative literals.

Fortunately, there exists an approach to negation-as-failure that bypasses
the problem of floundering. This is usually called constructive negation [2] and
its main idea can be explained by a simple example. Consider the predicate p

that holds for 1 and 2 and consider the query ?-not(p(X)). The original idea
behind constructive negation [2] is that in order to answer a negative query that
contains uninstantiated variables, the following procedure must be applied: we
run the positive version of the query and we collect the solutions as a disjunction;
we then return the negation of the disjunction as the answer to the original
query. In our example, the corresponding positive query (namely ?-p(X)) has
the answers X=1 and X=2. The negation of their disjunction is the conjunction
(X 6= 1)∧ (X 6= 2). Observe now that the procedure behind constructive negation
returns as answers not only substitutions (as it happens in negationless logic
programming) but also inequalities. Generalizing the above idea to the higher-
order setting requires the ability to express some form of inequalities regarding
the elements of sets. Intuitively, we would like to express that some element does
not belong to a set.

Example 3. Consider the following simple program:

p(Q):-Q(0),not(Q(1)).

Intuitively, p is true of all relations that contain 0 but they do not contain 1. A
reasonable answer for ?-p(R) would be R = {0} ∪ {X | X 6= 1}.

It turns out that the extension of higher-order logic programs with construc-
tive negation offers a much greater versatility to extensional higher-order logic
programming. We can extend higher-order logic programming with constructive
negation. Moreover, there exists a relative simple sound proof procedure for the
new language.

3 Definite Higher-Order Programs

Definition 1. A type can either be functional, argument, or predicate, denoted
by σ, ρ and π respectively and defined as:

σ := ι | (ι→ σ)
ρ := ι | π
π := o | (ρ→ π)

We will use τ to denote an arbitrary type.

As usual, the binary operator → is right-associative. A functional type that
is different from ι will often be written in the form ιn → ι, n ≥ 1. Moreover,
it can be easily seen that every predicate type π can be written in the form
ρ1 → · · · → ρn → o, n ≥ 0 (for n = 0 we assume that π = o).



Definition 2. The set of positive expressions of the higher-order language H
is recursively defined as follows.

1. Every predicate variable (respectively, predicate constant) of type π is a pos-
itive expression of type π; every individual variable (respectively, individual
constant) of type ι is a positive expression of type ι; the propositional con-
stants false and true are positive expressions of type o.

2. If f is an n-ary function symbol and E1, . . . ,En are positive expressions of
type ι, then (f E1 · · ·En) is a positive expression of type ι.

3. If E1 is a positive expression of type ρ → π and E2 is a positive expression
of type ρ, then (E1E2) is a positive expression of type π.

4. If V is an argument variable of type ρ and E is a positive expression of type
π, then (λV.E) is a positive expression of type ρ→ π.

5. If E1,E2 are positive expressions of type π, then (E1

∧
π E2) and (E1

∨
π E2)

are positive expressions of type π.
6. If E1,E2 are positive expressions of type ι, then (E1 ≈ E2) is a positive

expression of type o.
7. If E is an expression of type o and V is an argument variable of type ρ, then

(∃ρVE) is a positive expression of type o.

The notions of free and bound variables of a positive expression are defined
as usual. A positive expression is called closed if it does not contain any free
variables.

Definition 3. The set of clausal expressions of the higher-order language H is
defined as follows.

1. If p is a predicate constant of type π and E is a closed positive expression
of type π then p ←π E is a clausal expression of H, also called a program
clause.

2. If E is a positive expression of type o, then false ←o E (usually denoted by
←o E or just ← E) is a clausal expression of H, also called a goal clause.

All clausal expressions of H have type o. A program of H is a finite set of program
clauses of H.

Example 4. The following is a higher-order program that computes the closure of
its input binary relation R. The type of closure is π = (ι→ ι→ o)→ ι→ ι→ o.

closure←π λR.λX.λY.(R X Y)

closure←π λR.λX.λY.∃Z((R X Z)∧(closure R Z Y))

A possible query could be: ← (closure R a b) (which intuitively requests for
those binary relations such that the pair (a, b) belongs to their transitive closure).
In a Prolog-like extended syntax, this program would have been written as:

closure(R, X, Y) :- R(X, Y).

closure(R, X, Y) :- R(X, Z), closure(R, Z, Y).

and the corresponding query as ← closure(R, a, b).



3.1 SLD Resolution

Definition 4. The set of basic expressions of H is recursively defined as follows.
Every expression of H of type ι is a basic expression of type ι. Every predicate
variable of H of type π is a basic expression of type π. The propositional con-
stants false and true are basic expressions of type o. A non empty finite union
of expressions each one of which has the following form, is a basic expression of
type ρ1→· · ·→ρn→o (where V1 : ρ1, . . . ,Vn : ρn):

1. λV1. · · ·λVn.false
2. λV1. · · ·λVn.(A1 ∧ · · · ∧ An), where each Ai is either

(a) (Vi ≈ Bi), if Vi : ι and Bi : ι is a basic expression where Vj 6∈ fv(Bi)
for all j, or

(b) the constant true or Vi, if Vi : o, or
(c) the constant true or (Vi B11 · · ·B1r)∧· · ·∧(Vi Bm1 · · ·Bmr), where m > 0,

if type(Vi) = ρ′1 → · · · → ρ′r → o and for all k, l, Bkl is a basic expression
with type(Bkl) = ρ′l and for all j, Vj 6∈ fv(Bkl).

The Bi and Bkl will be called the basic subexpressions of B.

The set of basic templates of H is the subset of the set of basic expressions
of H defined as follows: The propositional constants false and true are basic
templates; every nonempty finite union of basic expressions in which all the
basic subexpressions involved are distinct free variables, is a basic template.

A substitution θ is a finite set of the form {V1/E1, . . . ,Vn/En}, where the
Vi’s are different argument variables of H and each Ei is a positive expression of
H having the same type as Vi. We write dom(θ) = {V1, . . . ,Vn} and range(θ) =
{E1, . . . ,En}. A substitution is called basic if all Ei are basic expressions. A
substitution is called zero-order, if type(Vi) = ι, for all i ∈ {1, . . . , n} (notice
that every zero-order substitution is also basic). The substitution corresponding
to the empty set will be called the identity substitution and will be denoted by
ε. The notions of unifier and most general unifier is defined in a standard way
for the zero-order substitutions. The composition of two substitutions and the
application of a substitution to a positive expressions is defined as usual.

Definition 5. Let P be a program and let G =← A and G′ =← A′ be goal
clauses. We say that A′ is derived in one step from A using θ (or equivalently

that G′ is derived in one step from G using θ), and we denote this fact by A
θ→ A′

(respectively, G
θ→ G′), if one of the following conditions applies:

1. p E1 · · ·En
ε→ E E1 · · ·En, where p←π E is a rule in P.

2. Q E1 · · ·En
θ→ (Q E1 · · ·En)θ, where θ = {Q/Bt} and Bt a basic template.

3. (λV.E) E1 · · ·En
ε→ (E{V/E1})E2 · · ·En.

4. (E′
∨
π E
′′) E1 · · ·En

ε→ E′ E1 · · ·En.

5. (E′
∨
π E
′′) E1 · · ·En

ε→ E′′ E1 · · ·En.

6. (E′
∧
π E
′′) E1 · · ·En

ε→ (E′ E1 · · ·En) ∧ (E′′ E1 · · ·En), where π 6= o.



7. (E1 ∧ E2)
θ→ (E′1 ∧ (E2θ)), if E1

θ→ E′1.

8. (E1 ∧ E2)
θ→ ((E1θ) ∧ E′2), if E2

θ→ E′2.

9. (true ∧ E)
ε→ E

10. (E ∧ true)
ε→ E

11. (E1 ≈ E2)
θ→ true, where θ is an mgu of E1 and E2.

12. (∃VE)
ε→ E

Let P be a program and G be a goal. Assume that P ∪ {G} has a finite
SLD-derivation G0 = G,G1, . . . ,Gn with basic substitutions θ1, . . . , θn, such that
Gn = 2. Then, we will say that P∪{G} has an SLD-refutation of length n using
basic substitution θ = θ1 · · · θn. A computed answer σ for P ∪ {G} is the basic
substitution obtained by restricting θ to the free variables of G.

Example 5. Consider the program of Example 4. A successful SLD-refutation of
the goal← (closure Q a b) is given here (where we have omitted certain simple
steps involving lambda abstractions).

closure Q a b θ1 = ε
(λR.λX.λY.(R X Y)) Q a b θ2 = ε
Q a b θ3 = {Q/(λX.λY.(X≈ X0)∧(Y≈ Y0))}
(λX.λY.(X≈ X0)∧(Y≈ Y0)) a b θ4 = ε
(a≈ X0)∧(b≈ Y0) θ5 = {X0/a}
true∧(b≈ Y0) θ6 = ε
(b≈ Y0) θ7 = {Y0/b}
true

If we restrict the composition θ1 · · · θ7 to the free variables of the goal, we get the
computed answer σ1 = {Q/λX.λY.(X≈ a)∧(Y≈ b)}. Intuitively, σ1 assigns to Q

the relation {(a, b)}. Notice that by substituting Q with different basic templates,
one can get answers that are “similar” to the previous one, such as for example
{(a, b), (Z1, Z2)}, and so on. Answers of this type are in some sense “represented”
by the answer {(a, b)}.

We say that the basic substitution θ is a correct answer for P ∪ {G} if Aθ is
a logical consequence of P.

Theorem 1 (Soundness). Let P be a program and G =← A be a goal. Then,
every computed answer for P ∪ {G} is a correct answer for P ∪ {G}.

Theorem 2 (Completeness). Let P be a program and G =← A be a goal. For
every correct answer θ for P ∪ {G}, there exists an SLD-refutation for P ∪ {G}
with computed answer δ and a substitution γ such that Gθ = Gδγ.

4 Normal Higher-Order Programs

The basic difference in the types of Hcn from those of H is the existence of a
type µ, which restricts the set of predicate variables that can be existentially



quantified or appear free in goal clauses. The subtypes µ (existential type) and
κ (set type) of ρ and π, respectively, are defined as follows.

µ := ι | κ
κ := ι→ o | (ι→ κ)

Definition 6. The set of body expressions of the higher-order language H is
recursively defined as follows.

1. Every predicate variable (respectively, predicate constant) of type π is a body
expression of type π; every individual variable (respectively, individual con-
stant) of type ι is a body expression of type ι; the propositional constants
false and true are body expressions of type o.

2. If f is an n-ary function symbol and E1, . . . ,En are body expressions of type
ι, then (f E1 · · ·En) is a body expression of type ι.

3. If E1 is a body expression of type ρ→ π and E2 is a body expression of type
ρ, then (E1 E2) is a body expression of type π.

4. If V is an argument variable of type ρ and E is a body expression of type π,
then (λV.E) is a body expression of type ρ→ π.

5. If E1,E2 are body expressions of type π, then (E1

∧
π E2) and (E1

∨
π E2) are

body expressions of type π.
6. If E1,E2 are body expressions of type ι, then (E1 ≈ E2) is a body expression

of type o.
7. If E is a body expression of type o and V is an existential variable of type µ,

then (∃µVE) is a body expression of type o.
8. If E is a body expression of type o, then (∼E) is a body expression of type o.

We will often write Â to denote a (possibly empty) sequence 〈A1, . . . ,An〉 of ex-
pressions. For example we will write (E Â) to denote an application (E A1 · · ·An);
(λX̂.E) to denote (λX1. · · ·λXn.E); (∃V̂ E) to denote (∃V1 · · · ∃Vn E).

Definition 7. The set of clausal expressions of Hcn is defined as follows:

1. If p is a predicate constant of type π and E is a closed body expression of
type π, then p ←π E is a clausal expression of Hcn, also called a program
clause.

2. If E is a body expression of type o and each free variable in E is of type µ, then
false←o E (usually denoted by ←o E or just ← E) is a clausal expression of
Hcn, also called a goal clause.

3. If p is a predicate constant of type π and E is a closed body expression of
type π, then p↔π E is a clausal expression of Hcn, also called a completion
expression.

All clausal expressions of Hcn have type o. A program of Hcn is a finite set of
program clauses of Hcn.

Consider a graph represented by a binary relation over the set of its vertices.
Then, given a graph of type π = (ι → ι → o), we can express the set of its
vertices as a predicate of type ι → o of the graph and a path of the graph as a
predicate of type ι→ ι→ o.



v← (λG.λX.∃Y(G X Y))
∨
(λG.λX.∃Y(G Y X))

p← λG.λX.λY.(closure G X Y)

The predicate v succeeds if its second argument is a vertex of its first argument.
The predicate p succeeds if there is a path between two vertices of the graph.
Note that the path is actually a transitive closure of the graph. We can easily
express basic connectivity properties of a graph.

disconnected← λG.∃X∃Y((v G X)∧(v G Y)∧∼(X≈Y)∧∼(p G X Y))

nonclique← λG.λS.∃X∃Y((S X)∧(S Y)∧∼(X≈Y)∧∼(G X Y))

connected← λG.∼(disconnected G)

clique← λG.λS.(subset S (v G))∧∼(nonclique G S)

Let P be a program and let p be a predicate constant of type π. Then, the
completed definition for p with respect to P is obtained as follows:

– if there exist exactly k > 0 program clauses of the form p ←π Ei, where
i ∈ {1, . . . , k} for p in P, then the completed definition for p is the expression
p↔π E, where E = E1

∨
π · · ·

∨
π Ek;

– if there are no program clauses for p in P, then the completed definition for
p is the expression p↔π E, where E is of type π and E = λX̂.false.

The program completion comp(P) of P is the set consisting of all the com-
pleted definitions for all predicate constants that appear in P.

4.1 Proof Procedure

An inequality ∼∃V̂(E1 ≈ E2) is considered

– valid if E1 and E2 cannot be unified;
– unsatisfiable if there is a substitution θ that unifies E1 and E2 and contains

only bindings of variables in V̂;
– satisfiable if it is not unsatisfiable.

An inequality will be called primitive if it is satisfiable, non valid and either E1

or E2 is a variable.

Definition 8. The set of normal basic expressions of Hcn of type µ is defined
recursively as follows.

1. Every expression of Hcn of type ι is a normal basic expression of type ι.
2. Every predicate variable of type κ is a normal basic expression of type κ.
3. If E1,E2 are normal basic expressions of type κ, then E1

∨
κ E2 and E1

∧
κ E2

are normal basic expressions of type κ.
4. The expressions of the following form are normal basic expressions of type

ιn → o:

– λX̂.∃V̂(X̂ ≈ Â)
– λX̂. ∼∃V̂(X̂ ≈ Â)



where X̂ = 〈X1, . . . ,Xn〉, Â = 〈A1, . . . ,An〉, each Xi is a variable of type ι,
each Âi is a normal basic expressions of type ι and V̂ is a possibly empty
subset of fv(Â).

Definition 9. Let P be a program and E,E′ be body expressions of type o. We
say that E is reduced (wrt. to P) to E′ (denoted as E ; E′) if one of the following
conditions applies:

1. p Â ; E Â, where E is the completed expression for p with respect to P
2. (λX.E) B Â ; E{X/B} Â
3. (E1

∨
π E2) Â ; (E1 Â) ∨ (E2 Â)

4. (E1

∧
π E2) Â ; (E1 Â) ∧ (E2 Â)

Definition 10. Let P a program and let Gk and Gk+1 be goal clauses and let
Gk be a conjunction ← A1 ∧ · · · ∧ An, where each Ai is a body expression of
type o. Moreover, let Ai one of the A1, . . . ,An (called selected expression) and
A′ = A1∧· · ·∧Ai−1∧Ai+1∧· · ·∧An. We say that Gk+1 is derived in one step from

Gk using θ (denoted as Gk
θ→ Gk+1) if one of the following conditions applies:

1. if Ai is true and n > 1, then Gk+1 =← A′ is derived from Gk using θ = ε;
2. if Ai is (E1 ∨ E2), then Gk+1 =← A1 ∧ · · · ∧ Ej ∧ · · · ∧ An is derived from Gk

using θ = ε where j ∈ {1, 2};
3. if Ai is (∃V E), then Gk+1 =← A1 ∧ · · · ∧ E ∧ · · · ∧ An is derived from Gk

using θ = ε;
4. if Ai ; A′i, then Gk+1 =← A1 ∧· · ·∧ A′i ∧· · ·∧ An is derived from Gk using

θ = ε;
5. if Ai is (E1 ≈ E2), then Gk+1 =← A′θ is derived from Gk using θ =

mgu(E1,E2);
6. if Ai is (R Ê) and R : κ be a variable, then Gk+1 =← A′θ is derived from Gk

using θ = {R/(λX̂.(X̂ ≈ Ê)
∨
κ R
′)} where R′ : κ is a fresh variable;

7. if Ai is ∼∃V̂ E and Ai is negatively reduced to A′i, then Gk+1 =← A1∧· · ·∧
A′i ∧· · ·∧ An is derived from Gk using θ = ε;

8. if Ai is ∼∃V̂(R Ê), variable R : κ and R 6∈ V̂, then Gk+1 =← A′θ is derived
from Gk using θ = {R/(λX̂. ∼∃V̂(X̂ ≈ Ê)

∧
κ R
′)}, where R′ : κ is a fresh

variable;
9. if Ai is ∼∃V̂ ∼ (R Ê), variable R : κ and R 6∈ V̂, then Gk+1 =← A′θ is

derived from Gk using θ = {R/(λX̂.∃V̂(X̂ ≈ Ê)
∨
κ R
′)}, where R′ : κ is a

fresh variable.

Note that the single step derivation will essentially behave similarly with
the Definition 5 for definite higher-order programs. The last three cases of the
single-step derivation handle the cases of a negative expression.

Definition 11. Let P be a program and let B =∼∃Û(A1 ∧ · · · ∧ An) be a body
expression where Ai is a body expression except from conjunction. Let Ai be one
of A1, . . . ,An and A′ = A1 ∧ · · · ∧ Ai−1 ∧ Ai+1 ∧ · · · ∧ An. Moreover, let B′ be a
body expression. We say that B is negatively reduced to B′ if one of the following
conditions applies:



1. if Ai is false, then B′ = true;
2. if Ai is true and n = 1, then B′ = false; otherwise B′ =∼∃Û A′;
3. if Ai is (E1 ∨E2), then B′ = B′1 ∧B′2 where B′j =∼∃Û(A1 ∧ · · · ∧Ej ∧ · · · ∧An)

with j ∈ {1, 2};
4. if Ai is (∃V E), then B′ =∼∃ÛV(A1 ∧ · · · ∧ E ∧ · · · ∧ An);
5. if Ai ; A′i, then B′ =∼∃Û(A1 ∧ · · · ∧ A′i ∧ · · · ∧ An);
6. if Ai is (E1 ≈ E2), then

(a) if ∼∃Û(E1 ≈ E2) is valid, then B′ = true;

(b) if ∼∃Û(E1 ≈ E2) is not valid and if neither E1 nor E2 is a variable, then X̂
is dom(θ), θ = unify(E1,E2) and B′ =∼∃Û(A1∧· · ·∧(X̂ ≈ X̂θ)∧· · ·∧An).

(c) if ∼∃Û(E1 ≈ E2) is unsatisfiable and either E1 or E2 is a variable in Û,
then B′ =∼∃Û(A′θ), where θ = {X/E} and X is the one expression that
is a variable in Û and E is the other;

(d) if ∼∃Û(E1 ≈ E2) is primitive and n > 1, then B′ =∼∃Û1 Ai∨∃Û1(Ai∧ ∼
∃Û2 A′), where Û1 are in Û that are free in Ai and Û2 in Û not in Û1;

7. if Ai is (R Ê) and variable R : κ, then
(a) if R ∈ Û, then B′ =∼∃Û′(A′θ), where θ = {R/(λX.(X ≈ E)

∨
κ R
′)}, R′ : κ

is a fresh variable and Û′ = Û{R/R′};
(b) if R 6∈ Û and n > 1, then B′ =∼∃Û1 Ai ∨ ∃Û1(Ai∧ ∼∃Û2 A′) ∧ B, where

Û1 are the variables in Û that are free in Ai and Û2 in Û not in Û1;
8. if Ai is ∼∃V̂ E and Ai is negatively reduced to A′i, then B′ =∼∃Û(A1∧· · ·∧

A′i∧· · ·∧An);

9. if Ai is a primitive inequality ∼∃V̂(E1 ≈ E2), then
(a) if fv(Ai) ∩ Û 6= ∅ and A′ is conjunction of primitive inequalities, then

B′ =∼∃Û A′;
(b) if fv(Ai) ∩ Û is empty, then B′ = ∃V̂(E1 ≈ E2)∨ ∼∃Û A′;

10. if Ai is ∼∃V̂(R Ê), variable R : κ and R 6∈ V̂, then
(a) if R ∈ Û, then B′ =∼∃Û′(A′θ) where θ = {R/(λX. ∼∃V̂(X ≈ E)

∧
κ R
′)},

R′ : κ is a fresh variable and Û′ = Û{R/R′};
(b) if R 6∈ Û and n > 1, then B′ =∼∃Û1 Ai ∨ ∃Û1(Ai∧ ∼∃Û2 A′) ∧ B, where

Û1 are the variables in Û that are free in Ai and Û2 in Û not in Û1;
(c) if R 6∈ Û, n = 1 and V̂ 6= ∅, then B′ = ∃V̂ ∼∃Û(∼(R Ê)∧ ∼∃V̂′(R E′));

11. if Ai is ∼∃V̂ ∼(R Ê) and variable R : κ and R 6∈ V̂, then
(a) if R ∈ Û, then B′ =∼∃Û′(A′θ), where θ = {R/(λX.∃V̂(X ≈ E)

∨
κ R
′)},

R′ : κ is a fresh variable and Û′ = Û{R/R′};
(b) if R 6∈ Û and n > 1, then B′ =∼∃Û1 Ai ∨ ∃Û1(Ai∧ ∼∃Û2 A′) ∧ B;
(c) if R 6∈ Û, n = 1 and V̂ 6= ∅, then B′ = ∃V̂ ∼∃Û((R Ê)∧ ∼∃V̂′ ∼(R E′)).

The computed answer of a successful derivation with primitive goal G′ and
basic substitution θ is extended as follows: The tuple (σ,G′′) is a computed
answer for P where σ is the basic substitution obtained by restricting θ to the
free variables of G and G′′ is the primitive goal G′ restricted to the free variables
of G and the variables in fv(range(σ)).

Example 6. Consider the following simple definition for the predicate q.

q← λZ1.λZ2.(Z1 ≈ a) ∧ (Z2 ≈ b)



that holds only for the tuple (a, b). Then, consider the goal:← (R X)∧ ∼(q X Y)

that requests bindings for the variables R, X and Y.

0. ← (R X)∧ ∼(q X Y)
1. ←∼(q X Y) using θ1 = {R/λZ.(Z ≈ X)

∨
R′}

2. ←∼((λZ1.λZ2.(Z1 ≈ a) ∧ (Z2 ≈ b)) X Y)
3. ← ∼((X ≈ a) ∧ (Y ≈ b))
4. ←∼(X ≈ a) ∨ (X ≈ a)∧ ∼(Y ≈ a)
5. ←∼(X ≈ a)

In step 4 the procedure generates two branches. The first one terminates
immediately with a primitive inequality. The computed answer is ∼(X ≈ a) and
{R/λZ.(Z ≈ X)

∨
R′}.

Theorem 3 (Soundness). Let P be a program and G be a goal. Then, every
computed answer for P ∪ {G} is a correct answer for comp(P) ∪ {G}.

5 Conclusions

In this dissertation we have extended the study initiated in [7] and derived a
complete framework for extensional higher-order logic programming. We have
introduced the higher-order language H that extends the language in [7] and al-
lows uninstantiated predicate variables. We have proposed a sound and complete
SLD-resolution with respect to the minimum Herbrand model semantics.

We have also introduced an extension of H that supports the operator of
negation-as-failure. We have proposed a proof procedure that extends the higher-
order SLD-resolution in order to handle constructive negation. As a result, the
proposed proof procedure, avoids the floundering problem of negation-as-failure.
We have also established the soundness of the proof procedure with respect to
the completion semantics.
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